On the Asymptotic Optimality of Alternative Minimum-Distance Estimators in Linear Latent-Variable Models
Albert Satorra and
Heinz Neudecker
Econometric Theory, 1994, vol. 10, issue 5, 867-883
Abstract:
In the context of linear latent-variable models, and a general type of distribution of the data, the asymptotic optimality of a subvector of minimum-distance estimators whose weight matrix uses only second-order moments is investigated. The asymptotic optimality extends to the whole vector of parameter estimators, if additional restrictions on the third-order moments of the variables are imposed. Results related to the optimality of normal (pseudo) maximum likelihood methods are also encompassed. The results derived concern a wide class of latent-variable models and estimation methods used routinely in software for the analysis of latent-variable models such as LISREL, EQS, and CALIS. The general results are specialized to the context of multivariate regression and simultaneous equations with errors in variables.
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: On the asymptotic optimality of alternative minimum-distance estimators in linear latent-variable models (1993) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:10:y:1994:i:05:p:867-883_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().