EconPapers    
Economics at your fingertips  
 

Bayesian Inference of Trend and Difference-Stationarity

Robert E. McCulloch and Ruey S. Tsay

Econometric Theory, 1994, vol. 10, issue 3-4, 596-608

Abstract: This paper proposes a general Bayesian framework for distinguishing between trend- and difference-stationarity. Usually, in model selection, we assume that all of the data were generated by one of the models under consideration. In studying time series, however, we may be concerned that the process is changing over time, so that the preferred model changes over time as well. To handle this possibility, we compute the posterior probabilities of the competing models for each observation. This way we can see if different segments of the series behave differently with respect to the competing models. The proposed method is a generalization of the usual odds ratio for model discrimination in Bayesian inference. In application, we employ the Gibbs sampler to overcome the computational difficulty. The procedure is illustrated by a real example.

Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:10:y:1994:i:3-4:p:596-608_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:10:y:1994:i:3-4:p:596-608_00