Causality in the Long Run
W.J. Clive and
Jin-Lung Lin
Econometric Theory, 1995, vol. 11, issue 3, 530-536
Abstract:
The definition of causation, discussed in Granger (1980) and elsewhere, has been widely applied in economics and in other disciplines. For this definition, a series yt is said to cause xt+l if it contains information about the forecastability for xt+l contained nowhere else in some large information set, which includes xt−j, j ≥ 0. However, it would be convenient to think of causality being different in extent or direction at seasonal or low frequencies, say, than at other frequencies. The fact that a stationary series is effectively the (uncountably infinite) sum of uncorrelated components, each of which is associated with a single frequency, or a narrow frequency band, introduces the possibility that the full causal relationship can be decomposed by frequency. This is known as the Wiener decomposition or the spectral decomposition of the series, as discussed by Hannan (1970). For any series generated by , where xt, and are both stationary, with finite variances and a(B) is a backward filterwith B the backward operator, there is a simple, well-known relationship between the spectral decompositions of the two series.
Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (165)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:11:y:1995:i:03:p:530-536_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().