On the Existence of Moments of Ratios of Quadratic Forms
Leigh Roberts
Econometric Theory, 1995, vol. 11, issue 4, 750-774
Abstract:
We obtain simple and generally applicable conditions for the existence of mixed moments E([X′ AX]″/[X′BX]U) of the ratio of quadratic forms T = X′ AX/X′BX where A and B are n × n symmetric matrices and X is a random n-vector. Our principal theorem is easily stated when X has an elliptically symmetric distribution, which class includes the multivariate normal and t distributions, whether degenerate or not. The result applies to the ratio of multivariate quadratic polynomials and can be expected to remain valid in most situations in which X is subject to linear constraints. If u ≤ v, the precise distribution of X, and in particular the existence of moments of X, is virtually irrelevant to the existence of the mixed moments of T; if u > v, a prerequisite for existence of the (u, v)th mixed moment is the existence of the 2(u − v)th moment of X When Xis not degenerate, the principal further requirement for the existence of the mixed moment is that B has rank exceeding 2v.
Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:11:y:1995:i:04:p:750-774_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().