EconPapers    
Economics at your fingertips  
 

On the Existence of Moments of Ratios of Quadratic Forms

Leigh Roberts

Econometric Theory, 1995, vol. 11, issue 4, 750-774

Abstract: We obtain simple and generally applicable conditions for the existence of mixed moments E([X′ AX]″/[X′BX]U) of the ratio of quadratic forms T = X′ AX/X′BX where A and B are n × n symmetric matrices and X is a random n-vector. Our principal theorem is easily stated when X has an elliptically symmetric distribution, which class includes the multivariate normal and t distributions, whether degenerate or not. The result applies to the ratio of multivariate quadratic polynomials and can be expected to remain valid in most situations in which X is subject to linear constraints. If u ≤ v, the precise distribution of X, and in particular the existence of moments of X, is virtually irrelevant to the existence of the mixed moments of T; if u > v, a prerequisite for existence of the (u, v)th mixed moment is the existence of the 2(u − v)th moment of X When Xis not degenerate, the principal further requirement for the existence of the mixed moment is that B has rank exceeding 2v.

Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:11:y:1995:i:04:p:750-774_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:11:y:1995:i:04:p:750-774_00