Robust Nonstationary Regression
Peter Phillips
Econometric Theory, 1995, vol. 11, issue 5, 912-951
Abstract:
This paper provides a robust statistical approach to nonstationary time series regression and inference. Fully modified extensions of traditional robust statistical procedures are developed that allow for endogeneities in the nonstationary regressors and serial dependence in the shocks that drive the regressors and the errors that appear in the equation being estimated. The suggested estimators involve semiparametric corrections to accommodate these possibilities, and they belong to the same family as the fully modified least-squares (FM-OLS) estimator of Phillips and Hansen (1990, Review of Economic Studies 57,99–125). Specific attention is given to fully modified least absolute deviation (FM-LAD) estimation and fully modified M (FM-M) estimation. The criterion function for LAD and some M-estimators is not always smooth, and this paper develops generalized function methods to cope with this difficulty in the asymptotics. The results given here include a strong law of large numbers and some weak convergence theory for partial sums of generalized functions of random variables. The limit distribution theory for FM-LAD and FM-M estimators that is developed includes the case of finite variance errors and the case of heavytailed (infinite variance) errors. Some simulations and a brief empirical illustration are reported.
Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Robust Nonstationary Regression (1993) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:11:y:1995:i:05:p:912-951_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().