Noncausality in Continuous Time Models
F. Comte and
Eric Renault
Econometric Theory, 1996, vol. 12, issue 2, 215-256
Abstract:
In this paper, we study new definitions of noncausality, set in a continuous time framework, illustrated by the intuitive example of stochastic volatility models. Then, we define CIMA processes (i.e., processes admitting a continuous time invertible moving average representation), for which canonical representations and sufficient conditions of invertibility are given. We can provide for those CIMA processes parametric characterizations of noncausality relations as well as properties of interest for structural interpretations. In particular, we examine the example of processes solutions of stochastic differential equations, for which we study the links between continuous and discrete time definitions, find conditions to solve the possible problem of aliasing, and set the question of testing continuous time noncausality on a discrete sample of observations. Finally, we illustrate a possible generalization of definitions and characterizations that can be applied to continuous time fractional ARMA processes.
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:12:y:1996:i:02:p:215-256_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().