EconPapers    
Economics at your fingertips  
 

The Estimation of Continuous Parameter Long-Memory Time Series Models

Marcus Chambers

Econometric Theory, 1996, vol. 12, issue 2, 374-390

Abstract: A class of univariate fractional ARIMA models with a continuous time parameter is developed for the purpose of modeling long-memory time series. The spectral density of discretely observed data is derived for both point observations (stock variables) and integral observations (flow variables). A frequency domain maximum likelihood method is proposed for estimating the longmemory parameter and is shown to be consistent and asymptotically normally distributed, and some issues associated with the computation of the spectral density are explored.

Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:12:y:1996:i:02:p:374-390_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:12:y:1996:i:02:p:374-390_00