EconPapers    
Economics at your fingertips  
 

Dynamic Regression and Filtered Data Series: A Laplace Approximation to the Effects of Filtering in Small Samples

Eric Ghysels and Offer Lieberman

Econometric Theory, 1996, vol. 12, issue 3, 432-457

Abstract: It is common for an applied researcher to use filtered data, like seasonally adjusted series, for instance, to estimate the parameters of a dynamic regression model. In this paper, we study the effect of (linear) filters on the distribution of parameters of a dynamic regression model with a lagged dependent variable and a set of exogenous regressors. So far, only asymptotic results are available. Our main interest is to investigate the effect of filtering on the small sample bias and mean squared error. In general, these results entail a numerical integration of derivatives of the joint moment generating function of two quadratic forms in normal variables. The computation of these integrals is quite involved. However, we take advantage of the Laplace approximations to the bias and mean squared error, which substantially reduce the computational burden, as they yield relatively simple analytic expressions. We obtain analytic formulae for approximating the effect of filtering on the finite sample bias and mean squared error. We evaluate the adequacy of the approximations by comparison with Monte Carlo simulations, using the Census X-11 filter as a specific example

Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:12:y:1996:i:03:p:432-457_00

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:12:y:1996:i:03:p:432-457_00