Sobolev Estimation of Approximate Regressions
Jean-Pierre Florens,
Marc Ivaldi and
Sophie Larribeau ()
Econometric Theory, 1996, vol. 12, issue 5, 753-772
Abstract:
This paper focuses on the estimation of an approximated function and its derivatives. Let us assume that the data-generating process can be described by a family of regression models , where a is a multi-index of differentiation such that Dαϕ(xi) is the αth derivative of ϕ(xi) with respect to xi. The estimated model is characterized by a family Dαf(Xi|θ), where Dαf(Xi|θ) is the αth derivative of f(xi,|θ) and θ is an unknown parameter. The model is in general misspecified; that is, there is no θ such that Dαf(Xi|6) is equal to Dαϕ(Xi). Three different problems are discussed. First, the asymptotic behavior of the seemingly unrelated regression estimator of θ is shown to achieve the best approximation, in the Sobolev norm sense, of ϕ by an element of (f(Xi|θ)|θ ε Θ). Second, in the case of polynomial approximations, the expected derivatives of the limit of the estimated regression and of the true regression are proved to be equal if and only if the set of explanatory variables has a normal distribution. Third, different sets of α are introduced, and the different limits of estimated regressions characterized by these sets are proved to be equal if and only if the explanatory variables have a normal distribution. This result leads to a specification test.
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:12:y:1996:i:05:p:753-772_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().