Conditional Quantile Estimation and Inference for Arch Models
Roger Koenker and
Quanshui Zhao
Econometric Theory, 1996, vol. 12, issue 5, 793-813
Abstract:
Quantile regression methods are suggested for a class of ARCH models. Because conditional quantiles are readily interpretable in semiparametric ARCH models and are inherendy easier to estimate robustly than population moments, they offer some advantages over more familiar methods based on Gaussian likelihoods. Related inference methods, including the construction of prediction intervals, are also briefly discussed.
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (133)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:12:y:1996:i:05:p:793-813_00
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().