CONSISTENT SPECIFICATION TESTING WITH NUISANCE PARAMETERS PRESENT ONLY UNDER THE ALTERNATIVE
Maxwell B. Stinchcombe and
Halbert White
Econometric Theory, 1998, vol. 14, issue 3, 295-325
Abstract:
The nonparametric and the nuisance parameter approaches to consistently testing statistical models are both attempts to estimate topological measures of distance between a parametric and a nonparametric fit, and neither dominates in experiments. This topological unification allows us to greatly extend the nuisance parameter approach. How and why the nuisance parameter approach works and how it can be extended bear closely on recent developments in artificial neural networks. Statistical content is provided by viewing specification tests with nuisance parameters as tests of hypotheses about Banach-valued random elements and applying the Banach central limit theorem and law of iterated logarithm, leading to simple procedures that can be used as a guide to when computationally more elaborate procedures may be warranted.
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (206)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:14:y:1998:i:03:p:295-325_14
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing (csjnls@cambridge.org).