EconPapers    
Economics at your fingertips  
 

THE BEHAVIOR OF FORECAST ERRORS FROM A NEARLY INTEGRATED AR(1) MODEL AS BOTH SAMPLE SIZE AND FORECAST HORIZON BECOME LARGE

Gordon Kemp

Econometric Theory, 1999, vol. 15, issue 2, 238-256

Abstract: We develop asymptotic approximations to the distribution of forecast errors from an estimated AR(1) model with no drift when the true process is nearly I(1) and both the forecast horizon and the sample size are allowed to increase at the same rate. We find that the forecast errors are the sums of two components that are asymptotically independent. The first is asymptotically normal whereas the second is asymptotically nonnormal. This throws doubt on the suitability of a normal approximation to the forecast error distribution. We then perform a Monte Carlo study to quantify further the effects on the forecast errors of sampling variability in the parameter estimates as we allow both forecast horizon and sample size to increase.

Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:15:y:1999:i:02:p:238-256_15

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:15:y:1999:i:02:p:238-256_15