THE NONSTATIONARY FRACTIONAL UNIT ROOT
Katsuto Tanaka
Econometric Theory, 1999, vol. 15, issue 4, 549-582
Abstract:
This paper deals with a scalar I(d) process {yj}, where the integration order d is any real number. Under this setting, we first explore asymptotic properties of various statistics associated with {yj}, assuming that d is known and is greater than or equal to ½. Note that {yj} becomes stationary when d ½. We then consider, under the normality assumption, testing and estimation for d, allowing for any value of d. The tests suggested here are asymptotically uniformly most powerful invariant, whereas the maximum likelihood estimator is asymptotically efficient. The asymptotic theory for these results will not assume normality. Unlike in the usual unit root problem based on autoregressive models, standard asymptotic results hold for test statistics and estimators, where d need not be restricted to d ≥ ½. Simulation experiments are conducted to examine the finite sample performance of both the tests and estimators.
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (133)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:15:y:1999:i:04:p:549-582_15
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().