EconPapers    
Economics at your fingertips  
 

GENERALIZATION OF GMM TO A CONTINUUM OF MOMENT CONDITIONS

Marine Carrasco and Jean-Pierre Florens

Econometric Theory, 2000, vol. 16, issue 6, 797-834

Abstract: This paper proposes a version of the generalized method of moments procedure that handles both the case where the number of moment conditions is finite and the case where there is a continuum of moment conditions. Typically, the moment conditions are indexed by an index parameter that takes its values in an interval. The objective function to minimize is then the norm of the moment conditions in a Hilbert space. The estimator is shown to be consistent and asymptotically normal. The optimal estimator is obtained by minimizing the norm of the moment conditions in the reproducing kernel Hilbert space associated with the covariance. We show an easy way to calculate this estimator. Finally, we study properties of a specification test using overidentifying restrictions. Results of this paper are useful in many instances where a continuum of moment conditions arises. Examples include efficient estimation of continuous time regression models, cross-sectional models that satisfy conditional moment restrictions, and scalar diffusion processes.

Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (135)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:16:y:2000:i:06:p:797-834_16

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:16:y:2000:i:06:p:797-834_16