TESTING FOR SERIAL CORRELATION OF UNKNOWN FORM USING WAVELET METHODS
Jin Lee and
Yongmiao Hong
Econometric Theory, 2001, vol. 17, issue 2, 386-423
Abstract:
A wavelet-based consistent test for serial correlation of unknown form is proposed. As a spatially adaptive estimation method, wavelets can effectively detect local features such as peaks and spikes in a spectral density, which can arise as a result of strong autocorrelation or seasonal or business cycle periodicities in economic and financial time series. The proposed test statistic is constructed by comparing a wavelet-based spectral density estimator and the null spectral density. It is asymptotically one-sided N(0,1) under the null hypothesis of no serial correlation and is consistent against serial correlation of unknown form. The test is expected to have better power than a kernel-based test (e.g., Hong, 1996, Econometrica 64, 837–864) when the true spectral density has significant spatial inhomogeneity. This is confirmed in a simulation study. Because the spectral densities of time series arising in practice usually have unknown smoothness, the wavelet-based test is a useful complement to the kernel-based test in practice.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (24)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:17:y:2001:i:02:p:386-423_17
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().