SEMIPARAMETRIC ESTIMATION OF A PARTIALLY LINEAR CENSORED REGRESSION MODEL
Songnian Chen and
Shakeeb Khan
Econometric Theory, 2001, vol. 17, issue 3, 567-590
Abstract:
In this paper we propose an estimation procedure for a censored regression model where the latent regression function has a partially linear form. Based on a conditional quantile restriction, we estimate the model by a two stage procedure. The first stage nonparametrically estimates the conditional quantile function at in-sample and appropriate out-of-sample points, and the second stage involves a simple weighted least squares procedure. The proposed procedure is shown to have desirable asymptotic properties under regularity conditions that are standard in the literature. A small scale simulation study indicates that the estimator performs well in moderately sized samples.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:17:y:2001:i:03:p:567-590_17
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().