ASYMPTOTIC INFERENCE FOR NONSTATIONARY FRACTIONALLY INTEGRATED AUTOREGRESSIVE MOVING-AVERAGE MODELS
Shiqing Ling () and
W.K. Li
Econometric Theory, 2001, vol. 17, issue 4, 738-764
Abstract:
This paper considers nonstationary fractional autoregressive integrated moving-average (p,d,q) models with the fractionally differencing parameter d ∈ (− 1/2,1/2) and the autoregression function with roots on or outside the unit circle. Asymptotic inference is based on the conditional sum of squares (CSS) estimation. Under some suitable conditions, it is shown that CSS estimators exist and are consistent. The asymptotic distributions of CSS estimators are expressed as functions of stochastic integrals of usual Brownian motions. Unlike results available in the literature, the limiting distributions of various unit roots are independent of the parameter d over the entire range d ∈ (− 1/2,1/2). This allows the unit roots and d to be estimated and tested separately without loss of efficiency. Our results are quite different from the current asymptotic theories on nonstationary long memory time series. The finite sample properties are examined for two special cases through simulations.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:17:y:2001:i:04:p:738-764_17
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().