ASYMPTOTICALLY EFFICIENT MEDIAN REGRESSION IN THE PRESENCE OF HETEROSKEDASTICITY OF UNKNOWN FORM
Quanshui Zhao
Econometric Theory, 2001, vol. 17, issue 4, 765-784
Abstract:
We consider a linear model with heteroskedasticity of unknown form. Using Stone's (1977, Annals of Statistics 5, 595–645) k nearest neighbors (k-NN) estimation approach, the optimal weightings for efficient least absolute deviation regression are estimated consistently using residuals from preliminary estimation. The reweighted least absolute deviation or median regression estimator with the estimated weights is shown to be equivalent to the estimator using the true but unknown weights under mild conditions. Asymptotic normality of the estimators is also established. In the finite sample case, the proposed estimators are found to outperform the generalized least squares method of Robinson (1987, Econometrica 55, 875–891) and the one-step estimator of Newey and Powell (1990, Econometric Theory 6, 295–317) based on a Monte Carlo simulation experiment.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:17:y:2001:i:04:p:765-784_17
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().