LIKELIHOOD-BASED INFERENCE IN TRENDING TIME SERIES WITH A ROOT NEAR UNITY
Zhijie Xiao
Econometric Theory, 2001, vol. 17, issue 6, 1082-1112
Abstract:
This paper studies likelihood-based estimation and tests for autoregressive time series models with deterministic trends and general disturbance distributions. In particular, a joint estimation of the trend coefficients and the autoregressive parameter is considered. Asymptotic analysis on the M-estimators is provided. It is shown that the limiting distributions of these estimators involve nonlinear equation systems of Brownian motions even for the simple case of least squares regression. Unit root tests based on M-estimation are also considered, and extensions of the Neyman–Pearson test are studied. The finite sample performance of these estimators and testing procedures is examined by Monte Carlo experiments.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:17:y:2001:i:06:p:1082-1112_17
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().