EconPapers    
Economics at your fingertips  
 

MIXING AND MOMENT PROPERTIES OF VARIOUS GARCH AND STOCHASTIC VOLATILITY MODELS

Marine Carrasco () and Xiaohong Chen ()

Econometric Theory, 2002, vol. 18, issue 1, 17-39

Abstract: This paper first provides some useful results on a generalized random coefficient autoregressive model and a generalized hidden Markov model. These results simultaneously imply strict stationarity, existence of higher order moments, geometric ergodicity, and β-mixing with exponential decay rates, which are important properties for statistical inference. As applications, we then provide easy-to-verify sufficient conditions to ensure β-mixing and finite higher order moments for various linear and nonlinear GARCH(1,1), linear and power GARCH(p,q), stochastic volatility, and autoregressive conditional duration models. For many of these models, our sufficient conditions for existence of second moments and exponential β-mixing are also necessary. For several GARCH(1,1) models, our sufficient conditions for existence of higher order moments again coincide with the necessary ones in He and Terasvirta (1999, Journal of Econometrics 92, 173–192).

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (222) Track citations by RSS feed

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:18:y:2002:i:01:p:17-39_18

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

 
Page updated 2019-11-06
Handle: RePEc:cup:etheor:v:18:y:2002:i:01:p:17-39_18