STATIONARY PROCESSES THAT LOOK LIKE RANDOM WALKS— THE BOUNDED RANDOM WALK PROCESS IN DISCRETE AND CONTINUOUS TIME
João Nicolau
Econometric Theory, 2002, vol. 18, issue 1, 99-118
Abstract:
Several economic and financial time series are bounded by an upper and lower finite limit (e.g., interest rates). It is not possible to say that these time series are random walks because random walks are limitless with probability one (as time goes to infinity). Yet, some of these time series behave just like random walks. In this paper we propose a new approach that takes into account these ideas. We propose a discrete-time and a continuous-time process (diffusion process) that generate bounded random walks. These paths are almost indistinguishable from random walks, although they are stochastically bounded by an upper and lower finite limit. We derive for both cases the ergodic conditions, and for the diffusion process we present a closed expression for the stationary distribution. This approach suggests that many time series with random walk behavior can in fact be stationarity processes.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:18:y:2002:i:01:p:99-118_18
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().