ASYMPTOTIC ROBUSTNESS IN MULTIPLE GROUP LINEAR-LATENT VARIABLE MODELS
Albert Satorra
Econometric Theory, 2002, vol. 18, issue 2, 297-312
Abstract:
Standard methods for analyzing linear-latent variable models rely on the assumption that the observed variables are normally distributed. Normality allows statistical inferences to be carried out based solely on the first-and second-order moments. In general, inferences for nonnormally distributed data require the estimates of matrices of third-and fourth-order moments. In the present paper, we show that inferences based on normal theory retain validity and asymptotic efficiency under general assumptions that allow for considerable departure from normality. In particular, we obtain conditions under which correct asymptotic inferences are attained when replacing a matrix of higher order moments by a matrix that depends only on cross-product moments of the data.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:18:y:2002:i:02:p:297-312_18
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().