EconPapers    
Economics at your fingertips  
 

EMPIRICAL CHARACTERISTIC FUNCTION IN TIME SERIES ESTIMATION

John Knight and Jun Yu ()

Econometric Theory, 2002, vol. 18, issue 3, 691-721

Abstract: Because the empirical characteristic function (ECF) is the Fourier transform of the empirical distribution function, it retains all the information in the sample but can overcome difficulties arising from the likelihood. This paper discusses an estimation method via the ECF for strictly stationary processes. Under some regularity conditions, the resulting estimators are shown to be consistent and asymptotically normal. The method is applied to estimate the stable autoregressive moving average (ARMA) models. For the general stable ARMA model for which the maximum likelihood approach is not feasible, Monte Carlo evidence shows that the ECF method is a viable estimation method for all the parameters of interest. For the Gaussian ARMA model, a particular stable ARMA model, the optimal weight functions and estimating equations are given. Monte Carlo studies highlight the finite sample performances of the ECF method relative to the exact and conditional maximum likelihood methods.

Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (29) Track citations by RSS feed

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
Working Paper: Empirical Characteristic Function in Time Series Estimation (1999) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:18:y:2002:i:03:p:691-721_18

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

 
Page updated 2020-11-26
Handle: RePEc:cup:etheor:v:18:y:2002:i:03:p:691-721_18