NONPARAMETRIC ESTIMATION OF VOLATILITY FUNCTIONS: THE LOCAL EXPONENTIAL ESTIMATOR
Flavio A. Ziegelmann
Econometric Theory, 2002, vol. 18, issue 4, 985-991
Abstract:
Kernel smoothing techniques free the traditional parametric estimators of volatility from the constraints related to their specific models. In this paper the nonparametric local exponential estimator is applied to estimate conditional volatility functions, ensuring its nonnegativity. Its asymptotic properties are established and compared with those for the local linear estimator. It theoretically enables us to determine when the exponential is expected to be superior to the linear estimator. A very strong and novel result is achieved: the exponential estimator is asymptotically fully adaptive to unknown conditional mean functions. Also, our simulation study shows superior performance of the exponential estimator.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:18:y:2002:i:04:p:985-991_18
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().