PMSE PERFORMANCE OF THE BIASED ESTIMATORS IN A LINEAR REGRESSION MODEL WHEN RELEVANT REGRESSORS ARE OMITTED
Akio Namba
Econometric Theory, 2002, vol. 18, issue 5, 1086-1098
Abstract:
In this paper, we consider a linear regression model when relevant regressors are omitted. We derive the explicit formulae for the predictive mean squared errors (PMSEs) of the Stein-rule (SR) estimator, the positive-part Stein-rule (PSR) estimator, the minimum mean squared error (MMSE) estimator, and the adjusted minimum mean squared error (AMMSE) estimator. It is shown analytically that the PSR estimator dominates the SR estimator in terms of PMSE even when there are omitted relevant regressors. Also, our numerical results show that the PSR estimator and the AMMSE estimator have much smaller PMSEs than the ordinary least squares estimator even when the relevant regressors are omitted.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:18:y:2002:i:05:p:1086-1098_18
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().