THE CONTINUITY OF THE LIMIT DISTRIBUTION IN THE PARAMETER OF INTEREST IS NOT ESSENTIAL FOR THE VALIDITY OF THE BOOTSTRAP
Atsushi Inoue and
Lutz Kilian
Econometric Theory, 2003, vol. 19, issue 6, 944-961
Abstract:
It is well known that the unrestricted bootstrap estimator of the slope parameter in the random walk model without drift converges to a random distribution. This bootstrap failure is commonly attributed to the discontinuity of the limit distribution of the least-squares estimator in the parameter of interest. We demonstrate by counterexample that this type of continuity is not essential for the validity of the bootstrap nor is it essential that the rate of convergence of the estimator remain constant over the whole parameter space.We thank Don Andrews, Shinichi Sakata, Jonathan Wright, and two anonymous referees for very helpful comments. The views expressed in this paper do not necessarily reflect those of the European Central Bank or its members.
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:19:y:2003:i:06:p:944-961_19
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().