Unbiasedness of Predictions from Etimated Vector Autoregressions
Jean-Marie Dufour ()
Econometric Theory, 1985, vol. 1, issue 3, 387-402
Abstract:
Forecasts from a univariate autoregressive model estimated by OLS are unbiased, irrespective of whether the model fitted has the correct order; this property only requires symmetry of the distribution of the innovations. In this paper, this result is generalized to vector autoregressions and a wide class of multivariate stochastic processes (which include Gaussian stationary multivariate stochastic processes) is described for which unbiasedness of predictions holds: specifically, if a vector autoregression of arbitrary finite order is fitted to a sample from any process in this class, the fitted model will produce unbiased forecasts, in the sense that the prediction errors have distributions symmetric about zero. Different numbers of lags may be used for each variable in each autoregression and variables may even be missing, without unbiasedness being affected. This property is exact in finite samples. Similarly, the residuals from the same autoregressions have distributions symmetric about zero.
Date: 1985
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Unbiasedness of Predictions From Estimated Vector Autoregressions (1983)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:1:y:1985:i:03:p:387-402_01
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().