AVERAGE DERIVATIVES FOR HAZARD FUNCTIONS
Tue Gørgens
Econometric Theory, 2004, vol. 20, issue 3, 437-463
Abstract:
This paper develops semiparametric kernel-based estimators of risk-specific hazard functions for competing risks data. Both discrete and continuous failure times are considered. The maintained assumption is that the hazard function depends on explanatory variables only through an index. In contrast to existing semiparametric estimators, proportional hazards is not assumed. The new estimators are asymptotically normally distributed. The estimator of index coefficients is root-n consistent. The estimator of hazard functions achieves the one-dimensional rate of convergence. Thus the index assumption eliminates the “curse of dimensionality.” The estimators perform well in Monte Carlo experiments.I thank Denise Doiron for stimulating my interest in this research project and Catherine de Fontenay, Hans Christian Kongsted, Lars Muus, seminar participants, and two anonymous referees for comments on an earlier version of the paper. I gratefully acknowledge the hospitality of the University of Aarhus and the University of Copenhagen, where part of this research was undertaken.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:20:y:2004:i:03:p:437-463_20
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().