REGRESSION MODEL FITTING WITH A LONG MEMORY COVARIATE PROCESS
Hira L. Koul,
Richard T. Baillie and
Donatas Surgailis
Econometric Theory, 2004, vol. 20, issue 3, 485-512
Abstract:
This paper proposes some tests for fitting a regression model with a long memory covariate process and with errors that form either a martingale difference sequence or a long memory moving average process, independent of the covariate. The tests are based on a partial sum process of the residuals from the fitted regression. The asymptotic null distribution of this process is discussed in some detail under each set of these assumptions. The proposed tests are shown to have known asymptotic null distributions in the case of martingale difference errors and also in the case of fitting a polynomial of a known degree through the origin when the errors have long memory. The theory is then illustrated with some examples based on the forward premium anomaly where a squared interest rate differential proxies a time dependent risk premium. The paper also shows that the proposed test statistic converges weakly to nonstandard distributions in some cases.The authors gratefully acknowledge the helpful comments of the co-editor Don Andrews and two anonymous referees. The research of the first two authors was partly supported by NSF grant DMS 00-71619.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:20:y:2004:i:03:p:485-512_20
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().