EconPapers    
Economics at your fingertips  
 

A NONPARAMETRIC SIMULATED MAXIMUM LIKELIHOOD ESTIMATION METHOD

Jean-David Fermanian and Bernard Salanié

Econometric Theory, 2004, vol. 20, issue 4, 701-734

Abstract: Existing simulation-based estimation methods are either general purpose but asymptotically inefficient or asymptotically efficient but only suitable for restricted classes of models. This paper studies a simulated maximum likelihood method that rests on estimating the likelihood nonparametrically on a simulated sample. We prove that this method, which can be used on very general models, is consistent and asymptotically efficient for static models. We then propose an extension to dynamic models and give some Monte-Carlo simulation results on a dynamic Tobit model.We thank Jean-Pierre Florens, Arnoldo Frigessi, Christian Gouriéroux, Jim Heckman, Guy Laroque, Oliver Linton, Nour Meddahi, Alain Monfort, Eric Renault, Christian Robert, Neil Shephard, and two referees for their comments. Remaining errors and imperfections are ours. Parts of this paper were written while Bernard Salanié was visiting the University of Chicago, which he thanks for its hospitality.

Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (43)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:20:y:2004:i:04:p:701-734_20

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:20:y:2004:i:04:p:701-734_20