ESTIMATING THE SKEWNESS IN DISCRETELY OBSERVED LÉVY PROCESSES
Jeannette H.C. Woerner
Econometric Theory, 2004, vol. 20, issue 5, 927-942
Abstract:
We consider models for financial data by Lévy processes, including hyperbolic, normal inverse Gaussian, and Carr, Geman, Madan, and Yor (CGMY) processes. They are given by their Lévy triplet (μ(θ),σ2,eθxg(x)ν(dx)), where μ denotes the drift, σ2 the diffusion, and eθxg(x)ν(dx) the Lévy measure, and the unknown parameter θ models the skewness of the process. We provide local asymptotic normality results and construct efficient estimators for the skewness parameter θ taking into account different discrete sampling schemes.I thank Prof. Dr. L. Rüschendorf for his steady encouragement, the referees for helpful comments, and the German National Scholarship Foundation for financial support.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:20:y:2004:i:05:p:927-942_20
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().