ASYMPTOTIC INFERENCE FOR NONSTATIONARY GARCH
Søren Tolver Jensen and
Anders Rahbek
Econometric Theory, 2004, vol. 20, issue 6, 1203-1226
Abstract:
Consistency and asymptotic normality are established for the highly applied quasi-maximum likelihood estimator in the GARCH(1,1) model. Contrary to existing literature we allow the parameters to be in the region where no stationary version of the process exists. This has the important implication that the likelihood-based estimator for the GARCH parameters is consistent and asymptotically normal in the entire parameter region including both stationary and explosive behavior. In particular, there is no “knife edge result like the unit root case” as hypothesized in Lumsdaine (1996, Econometrica 64, 575–596).Anders Rahbek is grateful for support from the Danish Social Sciences Research Council, the Centre for Analytical Finance (CAF), and the EU network DYNSTOCH. Both authors thank the two anonymous referees and the editor for highly valuable and detailed comments that have, we believe, led to a much improved version of the paper, both in terms of the econometric theory and of the presentation.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (112)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:20:y:2004:i:06:p:1203-1226_20
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().