AUTOMATIC POSITIVE SEMIDEFINITE HAC COVARIANCE MATRIX AND GMM ESTIMATION
Richard Smith ()
Econometric Theory, 2005, vol. 21, issue 1, 158-170
Abstract:
This paper proposes a new class of heteroskedastic and autocorrelation consistent (HAC) covariance matrix estimators. The standard HAC estimation method reweights estimators of the autocovariances. Here we initially smooth the data observations themselves using kernel function–based weights. The resultant HAC covariance matrix estimator is the normalized outer product of the smoothed random vectors and is therefore automatically positive semidefinite. A corresponding efficient GMM criterion may also be defined as a quadratic form in the smoothed moment indicators whose normalized minimand provides a test statistic for the overidentifying moment conditions.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: Automatic positive semi-definite HAC covariance matrix and GMM estimation (2004) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:21:y:2005:i:01:p:158-170_05
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().