Solutions to Problems Posed in Volume 20(1) and 20(2): 04.2.1. A Range Equality for Block Matrices with Orthogonal Projectors—Solution
Hans Joachim Werner
Econometric Theory, 2005, vol. 21, issue 2, 485-487
Abstract:
This solution offers additional insights into the theory of block-tridiagonal Toeplitz matrices. Block Toeplitz matrices have constant blocks on each block diagonal parallel to the block main diagonal. A block partitioned matrix is said to be block-tridiagonal if the nonzero blocks occur only on the block subdiagonal, the block main diagonal, and the block superdiagonal. Block-tridiagonal Toeplitz matrices are particularly nice in that they are inexpensive to investigate. Our first observation on such particular block Toeplitz matrices is easy to check, and its proof is therefore left to the reader.
Date: 2005
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:21:y:2005:i:02:p:485-487_22
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().