FINITE-SAMPLE PROPERTIES OF FORECASTS FROM THE STATIONARY FIRST-ORDER AUTOREGRESSIVE MODEL UNDER A GENERAL ERROR DISTRIBUTION
Yong Bao
Econometric Theory, 2007, vol. 23, issue 4, 767-773
Abstract:
We study the properties of the multi-period-ahead least-squares forecast for the stationary AR(1) model under a general error distribution. We find that the forecast is unbiased up to O(T−1), where T is the in-sample size, regardless of the error distribution and that the mean squared forecast error, up to O(T−3/2), is robust against nonnormality.The author is grateful to the co-editor Paolo Paruolo and two anonymous referees for helpful comments. The author is solely responsible for any remaining errors.
Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:23:y:2007:i:04:p:767-773_07
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().