EconPapers    
Economics at your fingertips  
 

WEIGHTED LEAST ABSOLUTE DEVIATIONS ESTIMATION FOR ARMA MODELS WITH INFINITE VARIANCE

Jiazhu Pan, Hui Wang and Qiwei Yao

Econometric Theory, 2007, vol. 23, issue 5, 852-879

Abstract: For autoregressive moving average (ARMA) models with infinite variance innovations, quasi-likelihood-based estimators (such as Whittle estimators) suffer from complex asymptotic distributions depending on unknown tail indices. This makes statistical inference for such models difficult. In contrast, the least absolute deviations estimators (LADE) are more appealing in dealing with heavy tailed processes. In this paper, we propose a weighted least absolute deviations estimator (WLADE) for ARMA models. We show that the proposed WLADE is asymptotically normal, is unbiased, and has the standard root-n convergence rate even when the variance of innovations is infinity. This paves the way for statistical inference based on asymptotic normality for heavy-tailed ARMA processes. For relatively small samples numerical results illustrate that the WLADE with appropriate weight is more accurate than the Whittle estimator, the quasi-maximum-likelihood estimator (QMLE), and the Gauss–Newton estimator when the innovation variance is infinite and that the efficiency loss due to the use of weights in estimation is not substantial.The authors thank the two referees for their valuable suggestions. The work was partially supported by an EPSRC research grant (UK) and the Natural Science Foundation of China (grant 10471005).

Date: 2007
References: Add references at CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:23:y:2007:i:05:p:852-879_07

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:23:y:2007:i:05:p:852-879_07