EconPapers    
Economics at your fingertips  
 

GAUSSIAN INFERENCE IN AR(1) TIME SERIES WITH OR WITHOUT A UNIT ROOT

Peter Phillips and Chirok Han

Econometric Theory, 2008, vol. 24, issue 3, 631-650

Abstract: This paper introduces a simple first-difference-based approach to estimation and inference for the AR(1) model. The estimates have virtually no finite-sample bias and are not sensitive to initial conditions, and the approach has the unusual advantage that a Gaussian central limit theory applies and is continuous as the autoregressive coefficient passes through unity with a uniform $\sqrt{n}$ rate of convergence. En route, a useful central limit theorem (CLT) for sample covariances of linear processes is given, following Phillips and Solo (1992, Annals of Statistics, 20, 971–1001). The approach also has useful extensions to dynamic panels.

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
Working Paper: Gaussian Inference in AR(1) Time Series with or without a Unit Root (2006) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:24:y:2008:i:03:p:631-650_08

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-04-07
Handle: RePEc:cup:etheor:v:24:y:2008:i:03:p:631-650_08