Economics at your fingertips  


Tomás del Barrio Castro () and Denise Osborn ()

Econometric Theory, 2008, vol. 24, issue 04, 1093-1129

Abstract: This paper examines the implications of applying the Hylleberg, Engle, Granger, and Yoo (1990, Journal of Econometrics 44, 215–238) (HEGY) seasonal root tests to a process that is periodically integrated. As an important special case, the random walk process is also considered, where the zero-frequency unit root t -statistic is shown to converge to the Dickey–Fuller distribution and all seasonal unit root statistics diverge. For periodically integrated processes and a sufficiently high order of augmentation, the HEGY t -statistics for unit roots at the zero and semiannual frequencies both converge to the same Dickey–Fuller distribution. Further, the HEGY joint test statistic for a unit root at the annual frequency and all joint test statistics across frequencies converge to the square of this distribution. Results are also derived for a fixed order of augmentation. Finite-sample Monte Carlo results indicate that, in practice, the zero-frequency HEGY statistic (with augmentation) captures the single unit root of the periodic integrated process, but there may be a high probability of incorrectly concluding that the process is seasonally integrated.

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (5) Track citations by RSS feed

Downloads: (external link) link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

Page updated 2019-07-28
Handle: RePEc:cup:etheor:v:24:y:2008:i:04:p:1093-1129_08