ROBUST OPTIMAL TESTS FOR CAUSALITY IN MULTIVARIATE TIME SERIES
Abdessamad Saidi and
Roch Roy
Econometric Theory, 2008, vol. 24, issue 4, 948-987
Abstract:
Here, we derive optimal rank-based tests for noncausality in the sense of Granger between two multivariate time series. Assuming that the global process admits a joint stationary vector autoregressive (VAR) representation with an elliptically symmetric innovation density, both no feedback and one direction causality hypotheses are tested. Using the characterization of noncausality in the VAR context, the local asymptotic normality (LAN) theory described in Le Cam (1986, Asymptotic Methods in Statistical Decision Theory) allows for constructing locally and asymptotically optimal tests for the null hypothesis of noncausality in one or both directions. These tests are based on multivariate residual ranks and signs (Hallin and Paindaveine, 2004a, Annals of Statistics 32, 2642–2678) and are shown to be asymptotically distribution free under elliptically symmetric innovation densities and invariant with respect to some affine transformations. Local powers and asymptotic relative efficiencies are also derived. The level, power, and robustness (to outliers) of the resulting tests are studied by simulation and are compared to those of the Wald test. Finally, the new tests are applied to Canadian money and income data.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:24:y:2008:i:04:p:948-987_08
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().