EconPapers    
Economics at your fingertips  
 

GENERAL TRIMMED ESTIMATION: ROBUST APPROACH TO NONLINEAR AND LIMITED DEPENDENT VARIABLE MODELS

Pavel Cizek

Econometric Theory, 2008, vol. 24, issue 6, 1500-1529

Abstract: High-breakdown-point regression estimators protect against large errors and data contamination. We generalize the concept of trimming used by many of these robust estimators, such as the least trimmed squares and maximum trimmed likelihood, and propose a general trimmed estimator, which renders robust estimators applicable far beyond the standard (non)linear regression models. We derive here the consistency and asymptotic distribution of the proposed general trimmed estimator under mild β-mixing conditions and demonstrate its applicability in nonlinear regression and limited dependent variable models.

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:24:y:2008:i:06:p:1500-1529_08

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:24:y:2008:i:06:p:1500-1529_08