EconPapers    
Economics at your fingertips  
 

LASSO-TYPE GMM ESTIMATOR

Mehmet Caner

Econometric Theory, 2009, vol. 25, issue 1, 270-290

Abstract: This paper proposes the least absolute shrinkage and selection operator–type (Lasso-type) generalized method of moments (GMM) estimator. This Lasso-type estimator is formed by the GMM objective function with the addition of a penalty term. The exponent of the penalty term in the regular Lasso estimator is equal to one. However, the exponent of the penalty term in the Lasso-type estimator is less than one in the analysis here. The magnitude of the exponent is reduced to avoid the asymptotic bias. This estimator selects the correct model and estimates it simultaneously. In other words, this method estimates the redundant parameters as zero in the large samples and provides the standard GMM limit distribution for the estimates of the nonzero parameters in the model. The asymptotic theory for our estimator is nonstandard. We conduct a simulation study that shows that the Lasso-type GMM correctly selects the true model much more often than the Bayesian information Criterion (BIC) and another model selection procedure based on the GMM objective function.

Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (48)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:25:y:2009:i:01:p:270-290_09

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:25:y:2009:i:01:p:270-290_09