# ON THE CONDITIONAL LIKELIHOOD RATIO TEST FOR SEVERAL PARAMETERS IN IV REGRESSION

*Grant Hillier*

*Econometric Theory*, 2009, vol. 25, issue 2, 305-335

**Abstract:**
For the problem of testing the hypothesis that all m coefficients of the right-hand-side endogenous variables in an instrumental variables (IV) regression are zero, the likelihood ratio (LR) test can, if the reduced form covariance matrix is known, be rendered similar by a conditioning argument. To exploit this fact requires knowledge of the relevant conditional cumulative distribution function (c.d.f.) of the LR statistic, but the statistic is a function of the smallest characteristic root of an (m + 1)-square matrix and is therefore analytically difficult to deal with when m > 1. We show in this paper that an iterative conditioning argument used by Hillier (2009) and Andrews, Moreira, and Stock (2007 Journal of Econometrics 139, 116â€“132) to evaluate the c.d.f. in the case m = 1 can be generalized to the case of arbitrary m. This means that we can completely bypass the difficulty of dealing with the smallest characteristic root. Analytic results are obtained for the case m = 2, and a simple and efficient simulation approach to evaluating the c.d.f. is suggested for larger values of m.

**Date:** 2009

**References:** Add references at CitEc

**Citations:** View citations in EconPapers (1) Track citations by RSS feed

**Downloads:** (external link)

https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

**Related works:**

Working Paper: On the conditional likelihood ratio test for several parameters in IV regression (2006)

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:cup:etheor:v:25:y:2009:i:02:p:305-335_09

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.

Bibliographic data for series maintained by Keith Waters ().