Economics at your fingertips  


Giuseppe Cavaliere () and Robert Taylor

Econometric Theory, 2009, vol. 25, issue 5, 1228-1276

Abstract: In this paper we provide a unified theory, and associated invariance principle, for the large-sample distributions of the Dickey–Fuller class of statistics when applied to unit root processes driven by innovations displaying nonstationary stochastic volatility of a very general form. These distributions are shown to depend on both the spot volatility and the integrated variation associated with the innovation process. We propose a partial solution (requiring any leverage effects to be asymptotically negligible) to the identified inference problem using a wild bootstrap–based approach. Results are initially presented in the context of martingale differences and are later generalized to allow for weak dependence. Monte Carlo evidence is also provided that suggests that our proposed bootstrap tests perform very well in finite samples in the presence of a range of innovation processes displaying nonstationary volatility and/or weak dependence.

Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (36) Track citations by RSS feed

Downloads: (external link) ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Keith Waters ().

Page updated 2020-10-13
Handle: RePEc:cup:etheor:v:25:y:2009:i:05:p:1228-1276_09