INFERENCE ON NONPARAMETRICALLY TRENDING TIME SERIES WITH FRACTIONAL ERRORS
P.M. Robinson
Econometric Theory, 2009, vol. 25, issue 6, 1716-1733
Abstract:
The central limit theorem for nonparametric kernel estimates of a smooth trend, with linearly generated errors, indicates asymptotic independence and homoskedasticity across fixed points, irrespective of whether disturbances have short memory, long memory, or antipersistence. However, the asymptotic variance depends on the kernel function in a way that varies across these three circumstances, and in the latter two it involves a double integral that cannot necessarily be evaluated in closed form. For a particular class of kernels, we obtain analytic formulas. We discuss extensions to more general settings, including ones involving possible cross-sectional or spatial dependence.
Date: 2009
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:25:y:2009:i:06:p:1716-1733_99
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().