EconPapers    
Economics at your fingertips  
 

EFFICIENT GMM ESTIMATION OF HIGH ORDER SPATIAL AUTOREGRESSIVE MODELS WITH AUTOREGRESSIVE DISTURBANCES

Lung-Fei Lee and Xiaodong Liu

Econometric Theory, 2010, vol. 26, issue 1, 187-230

Abstract: In this paper, we extend the GMM framework for the estimation of the mixed-regressive spatial autoregressive model by Lee(2007a) to estimate a high order mixed-regressive spatial autoregressive model with spatial autoregressive disturbances. Identification of such a general model is considered. The GMM approach has computational advantage over the conventional ML method. The proposed GMM estimators are shown to be consistent and asymptotically normal. The best GMM estimator is derived, within the class of GMM estimators based on linear and quadratic moment conditions of the disturbances. The best GMM estimator is asymptotically as efficient as the ML estimator under normality, more efficient than the QML estimator otherwise, and is efficient relative to the G2SLS estimator.

Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (105)

Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:26:y:2010:i:01:p:187-230_09

Access Statistics for this article

More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().

 
Page updated 2025-03-19
Handle: RePEc:cup:etheor:v:26:y:2010:i:01:p:187-230_09