ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP
Donald Andrews () and
Patrik Guggenberger
Econometric Theory, 2010, vol. 26, issue 2, 426-468
Abstract:
This paper considers inference based on a test statistic that has a limit distribution that is discontinuous in a parameter. The paper shows that subsampling and m out of n bootstrap tests based on such a test statistic often have asymptotic size—defined as the limit of exact size—that is greater than the nominal level of the tests. This is due to a lack of uniformity in the pointwise asymptotics. We determine precisely the asymptotic size of such tests under a general set of high-level conditions that are relatively easy to verify. The results show that the asymptotic size of subsampling and m out of n bootstrap tests is distorted in some examples but not in others.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (79)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:26:y:2010:i:02:p:426-468_10
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().