A TWO-STAGE PLUG-IN BANDWIDTH SELECTION AND ITS IMPLEMENTATION FOR COVARIANCE ESTIMATION
Masayuki Hirukawa
Econometric Theory, 2010, vol. 26, issue 3, 710-743
Abstract:
The two most popular bandwidth choice rules for kernel HAC estimation have been proposed by Andrews (1991) and Newey and West (1994). This paper suggests an alternative approach that estimates an unknown quantity in the optimal bandwidth for the HAC estimator (called normalized curvature) using a general class of kernels, and derives the optimal bandwidth that minimizes the asymptotic mean squared error of the estimator of normalized curvature. It is shown that the optimal bandwidth for the kernel-smoothed normalized curvature estimator should diverge at a slower rate than that of the HAC estimator using the same kernel. An implementation method of the optimal bandwidth for the HAC estimator, which is analogous to the one for probability density estimation by Sheather and Jones (1991), is also developed. The finite sample performance of the new bandwidth choice rule is assessed through Monte Carlo simulations.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:26:y:2010:i:03:p:710-743_99
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().