NONSTATIONARITY-EXTENDED WHITTLE ESTIMATION
Xiaofeng Shao
Econometric Theory, 2010, vol. 26, issue 4, 1060-1087
Abstract:
For long memory time series models with uncorrelated but dependent errors, we establish the asymptotic normality of the Whittle estimator under mild conditions. Our framework includes the widely used fractional autoregressive integrated moving average models with generalized autoregressive conditional heteroskedastic-type innovations. To cover nonstationary fractionally integrated processes, we extend the idea of Abadir, Distaso, and Giraitis (2007, Journal of Econometrics 141, 1353–1384) and develop the nonstationarity-extended Whittle estimation. The resulting estimator is shown to be asymptotically normal and is more efficient than the tapered Whittle estimator. Finally, the results from a small simulation study are presented to corroborate our theoretical findings.
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:26:y:2010:i:04:p:1060-1087_99
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().