A REPRESENTATION THEORY FOR POLYNOMIAL COFRACTIONALITY IN VECTOR AUTOREGRESSIVE MODELS
Massimo Franchi
Econometric Theory, 2010, vol. 26, issue 4, 1201-1217
Abstract:
We extend the representation theory of the autoregressive model in the fractional lag operator of Johansen (2008, Econometric Theory 24, 651–676). A recursive algorithm for the characterization of cofractional relations and the corresponding adjustment coefficients is given, and it is shown under which condition the solution of the model is fractional of order d and displays cofractional relations of order d − b and polynomial cofractional relations of order d − 2b,…, d − cb ≥ 0 for integer c; the cofractional relations and the corresponding moving average representation are characterized in terms of the autoregressive coefficients by the same algorithm. For c = 1 and c = 2 we find the results of Johansen (2008).
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:26:y:2010:i:04:p:1201-1217_99
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().