ON THE SPECTRAL PROPERTIES OF MATRICES ASSOCIATED WITH TREND FILTERS
Alessandra Luati and
Tommaso Proietti
Econometric Theory, 2010, vol. 26, issue 4, 1247-1261
Abstract:
This note is concerned with the spectral properties of matrices associated with linear smoothers. We derive analytical results on the eigenvalues and eigenvectors of smoothing matrices by interpreting the latter as perturbations of matrices belonging to algebras with known spectral properties, such as the circulant and the generalized tau. These results are used to characterize the properties of a smoother in terms of an approximate eigen-decomposition of the associated smoothing matrix.
Date: 2010
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.cambridge.org/core/product/identifier/ ... type/journal_article link to article abstract page (text/html)
Related works:
Working Paper: On the Spectral Properties of Matrices Associated with Trend Filters (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:cup:etheor:v:26:y:2010:i:04:p:1247-1261_99
Access Statistics for this article
More articles in Econometric Theory from Cambridge University Press Cambridge University Press, UPH, Shaftesbury Road, Cambridge CB2 8BS UK.
Bibliographic data for series maintained by Kirk Stebbing ().